PVDF microbelts for harvesting energy from respiration†

نویسندگان

  • Chengliang Sun
  • Jian Shi
  • Dylan J. Bayerl
  • Xudong Wang
چکیده

In this paper, we report a technique that uses piezoelectric polyvinylidene fluoride (PVDF) microbelts to convert the energy from low-speed air flow to electricity via their resonant oscillation. The micrometre thick PVDF thin films were fabricated by a top-down reactive ion etching process, where the thickness was controlled by etching time and the piezoelectric phase was well preserved. The thickness, air flow speed and electrical output relationship was predicted theoretically and characterized experimentally. The PVDF microbelts were able to generate sufficient electrical energy from low speed air flow for the sustained operation of small electronic devices. Their capability for harvesting energy from simulated respiration was also demonstrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smart Flat Membrane Sheet Vibration-Based Energy Harvesters

The dynamic responses of membrane are completely dependent on Pre-tensioned forces which are applied over a boundary of arbitrary curvilinear shape. In most practical cases, the dynamic responses of membrane structures are undesirable. Whilst they can be designed as vibration-based energy harvesters. In this paper a smart flat membrane sheet (SFMS) model for vibration-based energy harvester is ...

متن کامل

The Effect of Temperature and Strain on Power Conversion Efficiency of PVDF-Based Thermal Energy Harvesters

There can be a significant discrepancy between predicted and measured power conversion efficiency when using piezoelectric polymers for thermal energy harvesting. The influence of temperature and strain on electrical parameters can impact overall performances. We report the temperature and strain dependence of PVDF dielectric constant and losses and their impact on power conversion efficiency o...

متن کامل

Models for 31-Mode PVDF Energy Harvester for Wearable Applications

Currently, wearable electronics are increasingly widely used, leading to an increasing need of portable power supply. As a clean and renewable power source, piezoelectric energy harvester can transfer mechanical energy into electric energy directly, and the energy harvester based on polyvinylidene difluoride (PVDF) operating in 31-mode is appropriate to harvest energy from human motion. This pa...

متن کامل

Effective energy harvesting from a single electrode based triboelectric nanogenerator

The arch-shaped single electrode based triboelectric nanogenerator (TENG) is fabricated using thin film of reduced graphene oxide nanoribbons (rGONRs) with polyvinylidene fluoride (PVDF) polymer used as binder to effectively convert mechanical energy into electrical energy. The incorporation of rGONRs in PVDF polymer enhances average surface roughness of rGONRs/PVDF thin film. With the combinat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011